Рубрика: Երկրաչափություն

Պարապմունք 50

Հարցեր կրկնողության համար։
Լրացրու նախադասությունը․


1.Հավասարասրուն եռանկյան կողմերին անվանում են ————
2.Ուղղանկյուն եռանկյան կողմերին անվանում են —————
3.Ուղղանկյուն եռանկյան ամենամեծ կողմը դա ——————
4.Զուգահեռ ուղիղները դրանք այն ուղիղներն են, որ ———
5. Կից անկյունների գումարը հավասար Է ———
6. Անկյուն ասելով հասկանում ենք ———
7. Բութ անկյան աստիճանային չափն է ———
8. Ուղղանկյուն եռանկյան բոլոր անկյունների աստիճանային չափերի  գումարը հավասար է ———
9. Եռանկյան մի կողմը փոքր է մյուս երկու կողմերի ———
10. Երկու եռանկյուններ  հավասար են, եթե մի եռանկյան  երկու կողմը և —————————————։


Խնդիրներ կրկնողության համար։

1. Ուղղանկյան եռանկյան սուր անկյուններից մեկը 29 աստիճան է: Գտեք մյուս սուր անկյունը:
180o-90o-29o=61o

2. Ուղղանկյուն եռանկյան սուր անկյուններից մեկը չորս անգամ մեծ է մյուսից: Գտեք այդ եռանկյան բոլոր  անկյունները:

x+4x+90=180
5x=180-90
5x=90
x=90:5
x=18

18×4=72

18,72,90

3. Ուղղանկյուն եռանկյան սուր անկյունները հարաբերում են ինչպես 4:5: Գտեք այդ եռանկյան բոլոր  անկյունները:

4x+5x+90=180
9x=180-90
9x=90
x=90:9
x=10

10×4=40
10×5=50
40,50,90

4. Ուղղանկյուն եռանկյան սուր անկյուններից մեկը 45 աստիճան է, էջերից մեկը՝ 20: Գտեք մյուս էջը:

180-90-45=45

Քանի որ երկու անկյունները հավասար են, ապա այդ անկյուններին առընթեր կողմերը նույնպես հավասար են, հետևաբար մյուս էջը ևս 20 է։

5. BK-ն ABC եռանկյան բարձրությունն է: Գտեք <ABK-ն, եթե <A=27 աստիճան է:

90+27=117

180-117=63

<ABK=63

6. ABC ուղղանկյուն եռանկյան  <A=30 աստիճան է, իսկ BC=14: Գտեք AB ներքնաձիգը:

14*2=28

7. ABC ուղղանկյուն եռանկյան մեջ <A=60 աստիճան է, AC=8: Գտեք AB ներքնաձիգը:

8*2=16

8. ABC ուղղանկյուն եռանկյան AB ներքնաձիգն երկու անգամ մեծ է AC էջից: Գտեք <B-ն:

Քանի որ, AC էջը կազմում է ներքնաձգի կեսը, հետևաբար դրա դիմացի անկյունը հավասար է 30o-ի:

<B=30o

Рубрика: Երկրաչափություն

Պարապմունք 49

Հարցեր կրկնողության համար։ Իմանալ անգիր։

1.Նշիր ուղղանկյուն եռանկյան երեք հատկությունները։
2. Գրիր եռանկյան անհավասարության թեորեմը։
3. Գրիր ուղղանկյուն եռանկյունների հավասարության հայտանիշները։


Խառը խնդիրներ։
1.Կարո՞ղ է գոյություն ունենալ եռանկյուն 1սմ, 2սմ, 3սմ կողմերով։

Ոչ, չի կարող
2.Ուղղանկյուն եռանկյան 30 աստիճանի դիմացի էջը հավասար է 4սմ։ Գտիր ներքնաձիգի երկարությունը։

4*4=8

3.Հավասարասրուն եռանկյան կողմերից մեկը 25սմ է, իսկ մյուսը՝ 10սմ։ Դրանցից ո՞րն է հիմքը։

Եռանկյան հիմքը 10-ն է, քանի որ եռանկյան երկու կողմերի գումարը, պետք է մեծ լինի 3-րդ կողմից։

4. Ուղղանկյուն եռանկյան սուր անկյուններից մեկը 60 աստիճան է, իսկ ներքնաձիգի և փոքր  էջի գումարը 24 է։ Գտեք եռանկյան ներքնաձիգը։

Քանի որ 30o-ի դիմացի կողմը հավասար է ներքնաձիգի կեսին, ապա կարող ենք կատարել հետևյալ նշանակումը։ AB=x, BC=2x
x+2x=24 BC=2x=2×8=16
x=8

5. AC հիմքով  ABC հավասարասրուն եռանկյան մեջ տարված է  AF կիսորդը և  AH բարձրությունը։ Գտեք   AHF  եռանկյան անկյունները, եթե  <B=112 աստիճան է։

<B=112o, <A+<C=180o-112o=66o
<A=<C=34o
<BAF=<CAF=17o
<AFB=51o, <H=90o
<FAH=90o-51o=39o